실시간으로 포착한 온실가스 분자의 분해 과정
기초과학연구원 (IBS) 나노물질 및 화학반응 연구단 박정영 부연구단장(KAIST 화학과 교수) 연구팀은 문봉진 교수(GIST 물리·광과학과) 및 김현유 교수(충남대 신소재공학과) 연구팀과 함께 이산화탄소 분자가 로듐(Rh) 촉매 표면에서 분해되는 순간을 처음으로 직접 관찰했다. 이로써 지구온난화의 주범인 이산화탄소를 제거해 유용 물질로 전환할 수 있는 화학반응의 직접 증거를 제시했다. 지구온난화를 가속시키는 온실가스인 이산화탄소를 유용한 물질로 전환할 수 있는 기술이 최근 활발히 연구되고 있다. 포집된 이산화탄소를 메탄 혹은 메탄올과 같은 청정 연료로 전환한다면, 지나친 석유 의존을 극복하고 환경 문제도 해결할 수 있기 때문이다. 문제는 이산화탄소(CO2)는 화학적으로 매우 안정적이어서 전환에 높은 에너지가 소모된다는 점이다. 이산화탄소를 일산화탄소(CO)와 산소(O)로 분해시키는 초기 과정에는 수십 기압에 이르는 고압 반응이 필요하다. 따라서 최적 반응경로 설계 및 전환 효율 향상을 위해 이산화탄소의 분해 메커니즘을 면밀히 파악하는 것이 중요하다. 하지만 지금까지 분광학적 분석 등 제한적인 증거만 제시되었다. 이산화탄소 분해 과정의 화학적 메커니즘을 원자 수준에서 정확히 밝힌 연구는 없었다. 연구진은 실제 반응 환경에서 이산화탄소 분해과정을 실시간 관찰하고자 했다. 크기가 수 옹스트롬(Å·100억분의 1미터)에 불과한 이산화탄소 분자는 화학 반응기 내부 압력이 충분히 증가하면 촉매 표면에서 스스로 구조변화를 일으킬 수 있다. 이러한 이론적 예측에서 아이디어를 얻어 실험에 착수했다. 우선, 연구진은 머리카락 두께의 10만 분의 1 해상도를 가지는 상압 주사터널링현미경(AP-STM)을 활용해 로듐 촉매 표면에 맞닿은 이산화탄소 분자의 변화를 관찰했다. 관찰 결과, 가로·세로 폭이 각각 2~5nm인 로듐 촉매 표면에서 이산화탄소 분자들이 서로 충돌하다 결국 일산화탄소로 분해됐다. 김현유 충남대 교수는 “우리가 살아가는 상압 환경은 크기가 작은 이산화탄소 분자 입